On the enumeration of Krom functions

Lorenzo Sauras-Altuzarra

Dutch Days of Combinatorics, Utrecht, 2023

TECHNISCHE
UNIVERSITÄT
WIEN
Vienna University of Technology

Boolean functions

A Boolean function is an operation on \mathbb{Z}_{2}.
Example. A ternary Boolean function.

Fact. Every n-ary Boolean function can be represented as a polynomial of $\mathbb{Z}_{2}\left[x_{1}, \ldots, x_{n}\right]$, its Zhegalkin polynomial.
Fact. Every n-ary Boolean function can be represented as a 2^{n}-bitvector, its truth vector.
Fact (enumeration of Boolean functions). There are $2^{2^{n}}$ possible n-ary Boolean functions.

Krom functions

Now consider a Krom digraph: a digraph whose vertices are variables or negated variables, e.g. the following one.

A Krom function is constructed as follows.
(1) List the edges as factors of a product (the order does not matter):
$\left(\neg x_{3} \rightarrow \neg x_{1}\right)\left(x_{2} \rightarrow \neg x_{3}\right)\left(x_{2} \rightarrow x_{1}\right)\left(\neg x_{1} \rightarrow x_{2}\right)\left(x_{3} \rightarrow x_{3}\right)$.
(2) Replace the edges $u \rightarrow v$ with $u+u v+1$:
$\left(\neg x_{3}+\neg x_{3} \neg x_{1}+1\right)\left(x_{2}+x_{2} \neg x_{3}+1\right)\left(x_{2}+x_{2} x_{1}+1\right)\left(\neg x_{1}+\neg x_{1} x_{2}+1\right)\left(x_{3}+x_{3} x_{3}+1\right)$.
(3) Replace the negations $\neg x_{i}$ with $\left(x_{i}+1\right)$:
$\left(\left(x_{3}+1\right)+\left(x_{3}+1\right)\left(x_{1}+1\right)+1\right)\left(x_{2}+x_{2}\left(x_{3}+1\right)+1\right)\left(x_{2}+x_{2} x_{1}+1\right)\left(\left(x_{1}+1\right)+\left(x_{1}+1\right) x_{2}+1\right)\left(x_{3}+x_{3} x_{3}+1\right)$.
(4) Simplify (in $\left.\mathbb{Z}_{2}\left[x_{1}, \ldots, x_{n}\right]\right): x_{1} x_{2} x_{3}+x_{1} x_{3}$.

Note. The vast majority of Krom digraphs lead to the zero polynomial.
Open problem (enumeration of Krom functions). What is the number $K(n)$ of possible n-ary Krom functions?
Note. Only the first eight terms of K are currently known: 4, 16, 166, 4170, 224716, 24445368, 5167757614, 2061662323954 (computed by Knuth, see OEIS A109457).

Some observations (see OEIS A004211)

A Krom graph is a Krom digraph which is also a graph (i.e. a symmetric Krom digraph or, in other words, a Krom digraph which has double arrows only).
Problem. How many possible Krom functions can we generate if we only input Krom graphs? Observation. The answer to the above problem is $1+\mathcal{B}_{n}\left(2^{0}, \ldots, 2^{n-1}\right)$, where \mathcal{B}_{n} is the complete Bell polynomial in n variables,

$$
\left|\begin{array}{ccccc}
x_{1} / 0! & \cdots & \cdots & \cdots & x_{n} /(n-1)! \\
-1 & x_{1} / 0! & \cdots & \cdots & x_{n-1} /(n-2)! \\
& -2 & x_{1} / 0! & \cdots & x_{n-2} /(n-3)! \\
& & \ddots & \ddots & \vdots \\
& & & -(n-1) & x_{1} / 0!
\end{array}\right|
$$

Observation. The above number is also the number of possible n-ary Krom functions whose truth vector is palindromic.
Note. There are palindromic truth vectors which do not represent any Krom function, for example 01111110.

