On the enumeration of Krom functions

Lorenzo Sauras-Altuzarra

Dutch Days of Combinatorics, Utrecht, 2023

Lorenzo Sauras-Altuzarra

э

イロン イ団 とくほと くほとう

Boolean functions

A Boolean function is an operation on \mathbb{Z}_2 .

Example. A ternary Boolean function.

		x_1	<i>x</i> 2	<i>x</i> 3	$(x_1+1)x_3+1$		
Arguments (3-bitvectors), sorted by decreasing lexicographic order	_	1	1	1	1	_	
		1	1	0	1		
		1 0	1	1		$truth \ vector$	
	\rightarrow	1	0	0	1	~	(2 ³ -bitvector)
		0	1	1	0		
		0	1	0	1		
		0	0	1	0		
		0	0	0	1		

Fact. Every *n*-ary Boolean function can be represented as a polynomial of $\mathbb{Z}_2[x_1, \ldots, x_n]$, its **Zhegalkin polynomial**.

Fact. Every *n*-ary Boolean function can be represented as a 2^n -bitvector, its **truth vector**. **Fact (enumeration of Boolean functions).** There are 2^{2^n} possible *n*-ary Boolean functions.

イロン イロン イヨン イヨン 三日

Krom functions

Now consider a **Krom digraph**: a digraph whose vertices are variables or negated variables, e.g. the following one.

A Krom function is constructed as follows.

- $\textbf{ist the edges as factors of a product (the order does not matter):} (\neg x_3 \rightarrow \neg x_1)(x_2 \rightarrow \neg x_3)(x_2 \rightarrow x_1)(\neg x_1 \rightarrow x_2)(x_3 \rightarrow x_3).$
- **2** Replace the edges $u \to v$ with u + uv + 1: $(\neg x_3 + \neg x_3 \neg x_1 + 1)(x_2 + x_2 \neg x_3 + 1)(x_2 + x_2 x_1 + 1)(\neg x_1 + \neg x_1 x_2 + 1)(x_3 + x_3 x_3 + 1).$
- **2** Replace the negations $\neg x_i$ with $(x_i + 1)$: $((x_3+1)+(x_3+1)(x_1+1)+1)(x_2+x_2(x_3+1)+1)(x_2+x_2x_1+1)((x_1+1)+(x_1+1)x_2+1)(x_3+x_3x_3+1)$.
- Simplify (in $\mathbb{Z}_2[x_1, ..., x_n]$): $x_1x_2x_3 + x_1x_3$.

Note. The vast majority of Krom digraphs lead to the zero polynomial.

Open problem (enumeration of Krom functions). What is the number K(n) of possible *n*-ary Krom functions?

Note. Only the first eight terms of *K* are currently known: 4, 16, 166, 4170, 224716, 24445368, 5167757614, 2061662323954 (computed by Knuth, see OEIS A109457).

イロト 不得下 イヨト イヨト 二日

A **Krom graph** is a Krom digraph which is also a graph (i.e. a symmetric Krom digraph or, in other words, a Krom digraph which has double arrows only).

Problem. How many possible Krom functions can we generate if we only input Krom graphs? **Observation.** The answer to the above problem is $1 + B_n(2^0, \ldots, 2^{n-1})$, where B_n is the **complete Bell polynomial** in *n* variables,

$$\begin{vmatrix} x_{1}/0! & \cdots & \cdots & x_{n}/(n-1)! \\ -1 & x_{1}/0! & \cdots & \cdots & x_{n-1}/(n-2)! \\ & -2 & x_{1}/0! & \cdots & x_{n-2}/(n-3)! \\ & \ddots & \ddots & \vdots \\ & & -(n-1) & x_{1}/0! \end{vmatrix}$$

Observation. The above number is also the number of possible *n*-ary Krom functions whose truth vector is palindromic.

Note. There are palindromic truth vectors which do not represent any Krom function, for example 01111110.

<ロト <回ト < 三ト < 三ト = 三</p>